IDEAS FOR 21ST CENTURY EDUCATION
Ideas for 21st Century Education

Editors
Ade Gafar Abdullah, Ida Hamidah, Siti Aisyah, Ari Arifin Danuwijaya, Galuh Yuliani & Heli S.H. Munawaroh
Universitas Pendidikan Indonesia, Bandung, Indonesia

LONDON AND NEW YORK
Table of contents

Preface xi
Acknowledgments xiii
Organizing committees xv

Adult Education (ADE)
Practicing critical thinking through extensive reading activities 3
N. Husna
Teaching–learning sequence: Designing ionic bonding concept through model of educational reconstruction 9
E. Nursa’adah, L. Liliasari & A. Mudzakir

Art Education (AED)
Design-based research to explore Luk Keroncong as vocal technique exercise 17
R. Milyartini

Business Education (BED)
The effect of psychological contract in improving university effectiveness 25
A.L. Kadiyono, R.A. Sulistioabu & M. Batubara
Event as a means to educate youth through the volunteers program 31
D.R. Erlandia & I. Gemiharto
Stress at work and well-being: Study of stress level at work to improve employee well-being on Pertamina’s operators with standard ‘Pertamina Way’ in Bandung 37
M. Batubara

Course Management (CMT)
Preceptors’ perceptions of preceptorship at Surgical Care Room General Hospital Haji Adam Malik Medan 45
R.E. Nurhidayah, Y. Aryani & C.T. Siregar

Curriculum, Research and Development (CRD)
Improving the competences of vocational teachers: Graduate profile and learning outcomes of the agro-industry technology education program 51
M.N. Handayani
Authentic assessment analysis based on the KKNI curriculum in applied statistics learning 55
V. Yustitia & I.S. Wardani
The career competence profile of public elementary school students in Jakarta, Indonesia 61
A. Tjalla & H. Herdi
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Foundation (EDF)</td>
<td></td>
</tr>
<tr>
<td>Promoting undergraduate students’ critical thinking skills in zoology vertebrate courses</td>
<td>67</td>
</tr>
<tr>
<td>S. Su’adah, F. Sudargo & T. Hidayat</td>
<td></td>
</tr>
<tr>
<td>Information processing capability in the concept of biodiversity</td>
<td>71</td>
</tr>
<tr>
<td>S. Rini, A. Rahmat, T. Hidayat, M. Gemilavati & D. Fergiawan</td>
<td></td>
</tr>
<tr>
<td>The contribution of creative thinking skills to students’ creativity on enzyme kinetics practical projects using local materials</td>
<td>75</td>
</tr>
<tr>
<td>D.K. Sari, A. Permanasari & F.M.T. Supriyanti</td>
<td></td>
</tr>
<tr>
<td>The effect of ‘Everyone is a teacher here’ strategy on students’ results in geography</td>
<td>79</td>
</tr>
<tr>
<td>M. Melilia, G.N. Nindya & Z.K. Habibah</td>
<td></td>
</tr>
<tr>
<td>Students’ misconceptions on titration</td>
<td>83</td>
</tr>
<tr>
<td>H.R. Widarti, A. Permanasari & S. Mulyani</td>
<td></td>
</tr>
<tr>
<td>Parent-adolescent conflict: Is there a difference of main sources between intergeneration?</td>
<td>89</td>
</tr>
<tr>
<td>T.H. Dahlan, I.H. Mishbach & D.Z. Wyandini</td>
<td></td>
</tr>
<tr>
<td>Students’ mental model profile of microorganism after the implementation of mental model-based microbiology course</td>
<td>93</td>
</tr>
<tr>
<td>Y. Hamidyati, F. Sudargo, S. Redjeki & A. Fitriani</td>
<td></td>
</tr>
<tr>
<td>Building meaningful learning through coherence learning among mathematics, language and science lessons</td>
<td>97</td>
</tr>
<tr>
<td>A. Permanasari, T. Tarmudi, V. Visnoa & B. Rubini</td>
<td></td>
</tr>
<tr>
<td>The analysis of junior high schools’ educational facilities, infrastructure needs and location determination based on a social demand approach and geographical information system</td>
<td>101</td>
</tr>
<tr>
<td>T.C. Kurniatun, E. Rosalin, L. Somantri & A. Setiyoko</td>
<td></td>
</tr>
<tr>
<td>Debriefing teachers’ competence based on reflective teaching to facilitate creative thinking skills of elementary school students</td>
<td>105</td>
</tr>
<tr>
<td>R. Witarsa, A. Permanasari & U.S. Saud</td>
<td></td>
</tr>
<tr>
<td>Global Issues in Education and Research (GER)</td>
<td></td>
</tr>
<tr>
<td>The awareness of risk prevention level among urban elementary school students</td>
<td>113</td>
</tr>
<tr>
<td>R. Effendi</td>
<td></td>
</tr>
<tr>
<td>The role of academic self-management in improving students’ academic achievement</td>
<td>117</td>
</tr>
<tr>
<td>A.L. Kadiyono & H. Hafiar</td>
<td></td>
</tr>
<tr>
<td>Identifying research supporting factors: What should institutions provide?</td>
<td>121</td>
</tr>
<tr>
<td>M.C. Sondari, C. Rejito & L. Layyinatuurobantiyah</td>
<td></td>
</tr>
<tr>
<td>Science, technology, engineering, and mathematics literacy skills: Profiles and comparison amongst prospective science teachers</td>
<td>127</td>
</tr>
<tr>
<td>C. Rochman, D. Nasrudin & H. Y. Suhendi</td>
<td></td>
</tr>
<tr>
<td>Developing community-based media on environmental education to conserve mangrove and coral ecosystem in Kepulauan Seribu</td>
<td>131</td>
</tr>
<tr>
<td>D. Vivanti, M. Muarsyah, R. Komala & A. Suryanda</td>
<td></td>
</tr>
<tr>
<td>Social class and access to higher education in the secondary schools: Supporting the preparation of lessons and access for national exam</td>
<td>135</td>
</tr>
<tr>
<td>The gap of the economic background of the parents towards student achievement</td>
<td>139</td>
</tr>
<tr>
<td>Perception of students towards campus internationalization</td>
<td>143</td>
</tr>
<tr>
<td>P.E. Arinda, R. Apriliandi, R. Pranacita & A.G. Abdullah</td>
<td></td>
</tr>
<tr>
<td>The influence of gender differences in mathematics achievement of high school students</td>
<td>147</td>
</tr>
<tr>
<td>A. Riyanti, R. Anggraini, S. Nurohim, S. Komariah & A.G. Abdullah</td>
<td></td>
</tr>
</tbody>
</table>
Student participation in the tutoring program (comparative study between socio-economic schools high and low) 153

Factors affecting the study completion time of Bogor Agricultural University’s graduate students and its managerial implications 157
F. Siregar, D. Syah & N. Nahrowi

The location analysis of junior high schools in West Java Coastal Zone 161
T.C. Kurniawan, E. Rosalin, L. Somantri & A. Setiyoko

The inclusion of gender issues in global education in contemporary Indonesia 165
E. Haryanti

Learning Teaching Methodologies and Assessment (TMA)

The relationship between metacognitive skills and students’ achievement analyzed using problem based learning 173
B. Milama, N.A. Damayanti & D. Murniati

Perception towards school physics learning model to improve students’ critical thinking skills 177
N. Marpaung, L. Liliasari & A. Setiawan

The implementation of 5E learning cycle model-based inquiry to improve students’ learning achievements 181
A. Malik, Y. Dirgantara & A. Agung

Development and validation of creative thinking skills test in the project of laboratory apparatus modification 185
C. Dianwati, L. Liliasari, A. Setiabudi & B. Buchari

The implementation of guided inquiry learning to improve students’ understanding on kinetic theory of gases 189
D. Nanto, R.D. Iradat & Y.A. Bolkiah

Creativity assessment in project based learning using fuzzy grading system 195

Students’ attitude towards mobile-assisted language assessment: A case of speaking class 199

Student’s understanding consistency of thermal conductivity concept 203
I.S. Budiarti, I. Suparni, A. Cari, V. Viyanti, C. Winarti & J. Handhika

Students’ science literacy skills in ecosystem learning 207
M. Arohman

Developing historical thinking skills in learning history through teaching and learning methods 211
E.M. Karima, D. Supardan & A. Zainul

The effect of the outdoor learning model on biology learning motivation in SMAN 2 Bekasi on biodiversity matter 217
E. Suryani

Spatial thinking in frame-based learning of plant anatomy and its relation to logical thinking 223
E. Ermayanti, N.Y. Rustaman & A. Rahmat

Hypnoteaching and learning motivation enhancement 229
F. Faucan & L. Indriastuti

The development of an Augmented Reality (AR) technology-based learning media in metal structure concept 233
F.S. Irwansyah, I. Ramdani & I. Farida

The effectiveness of the local culture-based physics model in developing students’ creative thinking skills and understanding of the Nature of Science (NOS) 239
I.W. Suastra
Developing creative thinking ability and science concept understanding through SCSS problem solving oriented performance assessment teaching at primary schools

I.N. Jampel & I.W. Widiana

Identification of consistency and conceptual understanding of the Black principle

C. Winarti, A. Cari, I. Suparmi, J. Budiarti, H. Handhika & V. Vyanti

Relationship between vocational/senior high school educational background and the generic medical ability of midwifery students on a microbiology course

Y. Saparudin, N. Rustaman & A. Fitriani

Other Areas of Education (OAE)

Identification of scientific literacy aspects of a science textbook for class V of elementary school

S.S. Nurfaidah

Arun Masala Uli-e: The idea of the leader in Buginese myth

A.B.T. Bandung

The effectiveness of educational qualifications in organizational career development for education staff

A.Y. Rahyasih & D.A. Kurniady

Adventure-based counseling model to improve students’ adversity intelligence

N. Rusmana & K. Kusherdyana

The effectiveness of implementing an experience-based counseling model in reducing the tendency of students towards bullying behavior

N. Rusmana, A. Hafina & I. Saripah

The enhancement of self-regulated learning and achievement of open distance learning students through online tutorials

U. Rahayu, A. Widodo & S. Redjeki

Pedagogy (PDG)

Promoting individually-tailored teacher development program using the dynamic model of educational effectiveness research

S.N. Azkiyah

Students’ understanding, communication skills and anxiety of mathematics in an Islamic Junior High School using brain-based learning

T. Dahlan

Realizing a good education in an Indonesian university context

A. Aunnurrahman, F.A. Hamied & E. Emilia

Self-criticism on the teacher-training program from the faculty of education

A. Sofyan

The implementation of asking and group competition learning strategies to improve students’ creative thinking skills

D.F. Wulandari, N. Rustaman, A. Setiawan & I. Hamidah

Implementation of the government’s law on the management of Islamic religious education in the community

D.F. Sjoraida, A. Asnawi, D. Mariana & R.K. Anwar

Education of cultural and national characteristics based on local wisdom through social studies at SMP Negeri 1 Singaraja school, Bali

I.W. Kertih

The impact of a STEM project-based learning approach in vocational high school on students’ mathematical communication ability

A. Ismayani & Y.S. Kusumah

viii
Students’ attitude to biodiversity in Ciptagelar indigenous village
H.W. Kelana, T. Hidayat & A. Widodo

327

Determinate factors of mathematics problem solving ability toward spatial, verbal
and mathematical logic intelligence aspects
K. Kusaeri & B. Sholeh

333

Relationship between factors that improve student achievement in primary teacher
education institutes
S. Ratnaningsih

337

Ubiquitous Learning (UBL)

Developing dynamic instructional media to promote explorative activities in geometry lessons
S. Sariyasa

343

Internship information system availability on vocational high school websites
N. Amelia, A.G. Abdullah, M. Somantri & A.A. Danuvijaya

347

High school students’ perceptions of the application of Edmodo to English language learning
P. Purnawarman, A.A. Danuvijaya & A.R. Ningrum

351

A web-based model to enhance competency in the interconnection of multiple levels
of representation for pre-service teachers
I. Farida, L. Liliasari, W. Sopandi & D.H. Widyantoro

359

Author index

363
Preface

Invited speakers, Distinguished Guests, Presenters, Participants, and Authors of Asian Education Symposium.

It is such an honor to have had you at the Asian Education Symposium (AES) 2016, organized by the School of Postgraduate Universitas Pendidikan Indonesia. The AES 2016 is an international refereed conference dedicated to the advancement of theories and practices in education. The AES 2016 promotes collaborative excellence between academicians and professionals in education. The conference aimed to develop a strong network of researchers and pioneers in education worldwide. The aim of AES 2016 was to provide an opportunity for academicians and professionals from various educational fields with cross-disciplinary interests to bridge the knowledge gap, promote research esteem and the evolution of pedagogy.

The AES 2016 main theme was Ideas for 21st Century Education. Education plays an important role in countries all over the globe. It will enable countries to achieve sustainable development goals by 2030. As for countries in the Asian region, education is a vehicle that can move people’s mobility particularly in a time when we are welcoming the Asian Economic Community. It is without a doubt, there is a need to develop a strong collaboration and partnership among countries, both at regional and international levels. This symposium was one of our attempts to provide space for networking among academics and researchers in education. It is our hope that the symposium would contribute to the development of education as a distinct body of knowledge.

This symposium was a platform for us to disseminate and discuss our research findings. It is our expectation that the conversation from this symposium will inform policy and practices of education. It was also hoped that this symposium will open up future research on education, while at the same allowing all participants to expand their network. It is our hope that during this two-day symposium, all the participants had engaged in fruitful and meaningful discussions.

This AES 2016 proceedings contains papers that have been subjected to a double blind refereeing process. The process was conducted by academic peers with specific expertise in the key scopes and research orientation of the papers. It provides an opportunity for readers to engage with a selection of refereed papers that were presented during the symposium. The scopes of this symposium proceedings are: i) art education, ii) adult education, iii) business education, iv) course management, v) curriculum, research and development, vi) educational foundations, vii) learning/teaching methodologies and assessment, viii) global issues in education and research, ix) pedagogy, x) ubiquitous learning, and xi) other areas of education. We strongly believe that the selected papers published in the symposium proceedings will pay a significant contribution to the spread of knowledge.

We also would like to express our gratitude to all the keynote speakers from overseas who have travelled to our country to deliver and exchange their ideas. Our appreciation also goes to all the committee members who have worked hard to make this event possible. Once again, deepest gratitude for everybody's participation to the symposium as well as the proceedings.

Ade Gafar Abdullah,
Ida Hamidah,
Siti Aisyah,
Ari Arifin Danuwijaya,
Galuh Yuliani &
Heli S.H. Munawaroh

Universitas Pendidikan Indonesia, Bandung, Indonesia
Acknowledgments

Furqon—Universitas Pendidikan Indonesia, Indonesia
Asep Kadarohman—Universitas Pendidikan Indonesia, Indonesia
Edi Suryadi—Universitas Pendidikan Indonesia, Indonesia
Aim Abdulkarim—Universitas Pendidikan Indonesia, Indonesia
Didi Sukyadi—Universitas Pendidikan Indonesia, Indonesia
M. Solehudin—Universitas Pendidikan Indonesia, Indonesia
Takuya Baba—Hiroshima University, Japan
Christine C.M. Goh—Nanyang Technological University, Singapore
Allan L. White—University of Western, Australia
Tuğba Öztürk—Ankara University & University of Philippines, Philippines
Vasilis Strogilos—NIE Nanyang Technological University, Singapore
Tom Nelson Laird—Indiana University, US
Simon Clarke—The University of Western Australia, Australia
Diana Baranovich—University of Malaya, Malaysia
Taehee Kim—Youngsan University, Busan South Korea
Ikuo Yamamoto—Kinjo Gakuin University Japan, Japan
Numyoot Songthanapitak—President of RAVTE
Frank Büning—University of Magdeburg, Germany
Margarita Pavlova—UNESCO-UNEVOC Center, Hongkong
Maizam Alias—Universiti Tun Hussein Onn, Malaysia
Takahashi Mitsuru—Tohoku University, Japan
Shahbaz Khan—Director and Representative of UNESCO Indonesia, Indonesia
Gumpanat Boriboon—Srinakharinwirot University, Bangkok, Thailand
Organizing committees

ADVISORS

Prof. Furqon
Prof. Asep Kadarohman
Dr. Edi Suryadi
Prof. Aim Abdulkarim
Prof. Didi Sukyadi
Dr. M. Solehuddin
Prof. Takuya Baba
Prof. Christine C.M. Goh
Prof. Allan L. White
Dr. Tugba Oztürk
Prof. Tom Nelson Laird
Prof. Simon Clarke
Dr. Diana Baranovich
Prof. Taehye Kim
Prof. Ikuro Yamamoto
Assoc. Prof. Numyoot Songthanapitak
Prof. Frank Bünning
Dr. Margarita Pavlova
Prof. Maizam Alias
Prof. Takahashi Mitsuru
Prof. Dr. Shahbaz Khan
Gumpunat Boriboon, Ph.D

CONFERENCE CHAIR

Prof. Anna Permanasari

COMMITTEE

Dr. Ida Hamidah
Dr. Ade Gafar Abdullah
Vina Adriany, Ph.D
Dr. Siti Nurbayani
Dr. Ana
Dr. Vanessa Gaffar
Dr. Dian Budiana
Dr. Siti Aisyah
Didin Wahyudin, Ph.D
Ari Arifin Danuwijaya, M.A.
Determinate factors of mathematics problem solving ability toward spatial, verbal and mathematical logic intelligence aspects

K. Kusaeri & B. Sholeh
Universitas Islam Negeri Sunan Ampel, Surabaya, Indonesia

ABSTRACT: This research aimed to know and to analyze the direct and indirect effects of three multiple intelligences (spatial, verbal, mathematical-logic intelligences) towards students' mathematical problem solving ability. The subjects were 280 of 9th grade students of SMP Negeri 37 Surabaya. The data were collected by mathematical logic intelligence, problem solving ability, and psychological tests. The psychological test was used to measure psychological constructs of spatial and verbal intelligences. The data analysis used inferential statistics, path analysis. The results showed that: (1) the mathematical logic intelligence was the first determinant factor in the students' ability in mathematical problem solving (42.7%), and the second was the verbal intelligence (29.2%); (2) the verbal and mathematical logic intelligences had a direct effect to the ability of mathematical problem solving, simultaneously. The spatial intelligence affected indirectly the ability of mathematical problem solving. Individually or simultaneously, it appears that verbal and mathematical logic intelligences had a direct effect to the ability of mathematical problem solving. It implies that mathematics teachers of SMP/MTS should give more opportunities and stimulus of mathematical logic problems and verbal abilities to their students.

1 INTRODUCTION

Gardner's Multiple Intelligence Theory has contributed a lot in the world of education (Klein 1997). It especially has enriched and inspired teachers to create various kinds of teaching methods and techniques which help stimulate student's potentials (Murtadlo 2012). However, of all nine types of intelligence, only some of them are relevant and effective in helping students to solve mathematical problems because mathematical problem solving process needs not only one's understanding of the problem itself, but also high imagination and ability to visualize and configure spatial knowledge as well as ability to observe and analyze numbers (Tambunan 2006).

A student's language competence has great impact to his ability to solve problems since the ability will help him in understanding mathematical problems, which are normally stated in written form using mathematic abstract symbols. He will eventually be better able to describe phenomenon, generalize concepts, and to draw conclusions than his peers who are strong in other types of intelligence (Nugraha 2012). This ability relates closely to what Gardner mentioned as verbal intelligence.

Meanwhile, the ability of the child to visually imagine spatial configurations requires a special skill which needs practice and proper regular repetitions. This is related to spatial intelligence. Children with this intelligence are more likely to dabble with visual objects than with abstract symbols. They are also relatively easy to learn to use visual images and have advantages in terms of visual imagination (Tambunan 2006).

The ability to observe and analyze numbers requires logical thinking. This intelligence is a combination between numeracy ability and logic. Children who have logical-mathematical intelligence tend to be able to understand a problem, and analyze and solve them appropriately (Suhendri 2011). With this intelligences, children are able to think and devise solutions (exit) from the logical sequence (reasonable), are able to understand the pattern of relations as well as the process of deductive and inductive thinking (Susanti & Werdiningsih 2009).

The role of those three kinds of intelligences towards students' problem-solving ability has been supported by some previous studies. A study conducted by Landau (1984) and Campbell et al. (1995), for example, found a relationship between the spatial and mathematical problem-solving ability. Battista (1990) and Fennema & Tartre (1985) found an interaction between verbal intelligence with problem-solving abilities.

In Indonesian context, similar research was conducted with the focus on students' achievement, not on their mathematical problem-solving ability. One of the examples is a research conducted by Tambunan (2006) which found out a positive relationship between spatial ability and academic
achievement. Suhendri (2011) in his study found a significant influence of logical-mathematical intelligence on students’ mathematics learning outcomes.

Based on the above explanation, it appears that verbal intelligence, spatial and mathematical logic does not always have a contribution to mathematical problem solving ability. This situation is thought-provoking and very much an open possibility of further research. Therefore, this study specifically attempted to test this situation.

2 LITERATURE REVIEW

Learning is expected to provide enough space for children to develop their full potentials (Jayantika et al., 2013). In this context, learning does not only focus on the cognitive development of students alone, but it is also directed to develop their talents and potential.

Every child has different talents; sports, art and some are gifted in the field of processing numbers (numerical). A child who is gifted in specific areas is more likely to achieve better in the field than other children. That potential intelligence is unique for each child (Murtadlo 2012).

Problem solving activity is one of the ways to develop children’s intelligence. Through problem-solving experiences given to a child, a schema on facts and experiences will be established and can be used to solve the next problem (Tri Hariastuti & Saman 2007). In solving a mathematical problem, in particular, it takes specific understanding, analysis, calculation and imagination as well as verbal intelligence, logical mathematical and visual-spatial intelligence (Indragini 2010).

Studies which examine the contribution of three kinds of intelligences on learning outcomes or mathematical problem solving skills continue to emerge. One of these studies was conducted by Jayantika et al. (2013). The results indicated that spatial intelligence and logical mathematical intelligence both simultaneously and significantly contributed to mathematics achievement. These results show that spatial intelligence and logical mathematical intelligence are important factors that determine the mathematics achievement. Therefore, this study proposed that mathematics achievement can be improved by increasing the students’ spatial and logical mathematical intelligence.

Another study conducted by Foster (2012) indicated that the relationships between the students’ verbal skills and between their spatial skills were not as strong as would be expected. In fact, each of the two skills appeared to have stronger relationships with the other problem type. Additionally, although no strong relationships were observed among the students’ cognitive skills (i.e., verbal, spatial, and analytical skills), the strongest pairwise relationship was shown to exist between their verbal and analytical skills.

Although Campbell et al. (1995) found that vividness of visual imagery had no effect on students’ problem solving success, Diezmann & Watters (2000), in Brisbane, Australia, found that spatial intelligence has a significant contribution to the students’ achievement on mathematics subject. This supports the argument that logical reasoning was a greater contributor to mathematical success than vivid visual images.

From studies that have been described above, it appears that there is a lack of agreement in the role of spatial, verbal, mathematical-logic intelligences to a child’s mathematical problem solving abilities. It may be caused by the different researchers’ perspectives to problem-solving ability, or that there is a definition on the spatial, verbal, mathematical-logical intelligences themselves and how each intelligence correlated to each other. Therefore, this study has the possibility to provide the initial framework in interpreting the studies that have been conducted before and to find the link of each intelligence (spatial, verbal, mathematical-logical intelligences) or how each intelligence contributes to a child’s ability of mathematical problem solving.

3 RESEARCH METHODS

3.1 Research design

The study began with a theoretical study of multiple intelligences affecting mathematics. The results would be used to build a structural model (lines) of the theoretical relationship between the variables being discussed. In addition to quantitative data, qualitative data is also used to strengthen the quantitative data interpretation. The participants of the study were 280 of class IX students of SMP Negeri 37 Surabaya, the academic year of 2016/2017.

3.2 Research variables

The variables of this study were divided into two parts, namely the independent variable (exogenous) and the dependent variable (endogenous). The independent variable is the spatial intelligence (X1), verbal intelligence (X2) and logical-mathematical intelligence (X3), while the dependent variable is the mathematical problem solving ability (Y).

3.3 Research instruments

Two types of research instruments were used in this research: (1) tests—to collect data on logical
mathematical intelligence, verbal intelligence problem-solving ability, and (2) psychological test—to measure psychological constructs of spatial intelligence.

3.4 Data analysis

Data collected for this research were analyzed both quantitatively and qualitatively. Quantitative analysis was done using inferential statistics which included path analysis and regression analysis. The qualitative analysis was used to supplement the information obtained from the quantitative analysis.

4 RESULTS AND DISCUSSION

In this research report, the variable of spatial intelligence is symbolized with X1, verbal intelligence with X2, logical mathematical intelligence with X3 while mathematical problem solving ability with Y. The results summary of the calculation of the four variables is presented in the Table 1.

The correlation between variables was calculated using the Pearson product moment correlation. The results are set forth in the form of a diagram as the representation of the theoretical model which is built in this study (Figure 1).

Testing of the model was done using path analysis. Trimming model of path analysis was applied in this research with an expectation to improve the structural model of path analysis itself. This was done by excluding the exogenous variables with insignificant path coefficient.

Testing is done to look at the contribution of each variable (X1 to Y, X2 to Y, X3 to Y, X1 to Y, X2 to Y, and X1 to Y, X2 to Y, and X3 towards Y). The results showed a relationship between variables X1, X2, and X3 towards Y as follows.

Figure 2 shows that verbal intelligence contributes to a student’s mathematical problem solving ability in the amount of approximately 29.2%. Likewise, logical mathematical intelligence contributes to the mathematical problem solving abilities as big as 42.2%. However, this figure also showed that spatial intelligence does not directly affect a student’s ability of solving mathematical problems. Spatial intelligence contributes to the student’s logical thinking ability and verbal thinking skills, which in turn affects the ability of solving mathematical problems.

These findings suggest that the stronger one’s ability to think logically and the higher his verbal thinking skills, then his math problem-solving abilities would also increase. This statement indicates that a child with logical mathematical intelligence and verbal skills has the ability to manage logic and understand the context of the problems by applying logical thinking, counting, arranging pattern of relationships, and solving problems. The result is in line with Foster’s (2012), who found that children with high verbal ability and logical-mathematical skills outperform other children.

A child with strong verbal intelligence and logic, according to Gunawan (2003), is able to think and devise solutions in logical sequence, have good numeracy skills and be able to think logically and orderly. On the other hand, children who have
weaker ability in math and arranging solutions in logical sequence, results in the inability to apply the concepts, principles, formulas, and units, which will eventually have an impact on their lack of ability in solving mathematical problems (Fatoke et al., 2013).

Meanwhile, the result of this research, which shows the absence of a direct impact on the ability of spatial intelligence research in mathematical problem solving, is different from the results of the study conducted Landau (1984) and Campbell, Collis & Watson (1995). The differences occurred most probably because the instrument used to measure the spatial intelligence in this research is a psychological test. This means that the spatial abilities measured did not focus dimensional spatial ability and spatial geometry as the material that is usually taught and is often found when children learn geometry in junior high school, but on how to recognize the geometrical pattern changes that exist both in 2 dimensions and 3 dimensions.

5 CONCLUSIONS

Based on the previous description, the following conclusions can be drawn: (1) the mathematical logical intelligence was the first determinant factor of the students’ ability in solving mathematical problems (42.7%), while the second was the verbal intelligence (29.2%); and (2) when combined, the verbal and mathematical logic intelligences had direct effects to the students’ ability of mathematical problem solving, while the spatial intelligence had indirect effect on the ability of mathematical problem solving.

REFERENCES